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An unusually high yielding fluorination of aminopyralid (3) using F-TEDA (SELECTFLUOR™) in warm
water, followed by kinetic resolution (via iterative esterification/saponification) of the crude fluorination
product with dry HCI in methanol produced pure ring-fluorinated pyridine 2 in an overall yield of 31% for
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1. Introduction

The recent discovery of the commercially active ingredient
aminopyralid (3),' a potent broad spectrum auxinic picolinate her-
bicide, prompted us to revisit the structure-activity relationships
of this historical class of pyridine herbicides.? Through an activity
optimization effort, we discovered that replacement of the 6-CI
on the pyridine ring of 2 with aryl groups produced 1 which
showed unexpectedly high levels of herbicidal activity under a
controlled environment (glasshouse testing).? To validate this dis-
covery, we decided to test a representative of 1 in the field, which
mandated the synthesis of kilogram quantities of the material. The
electrolysis (4—3) and the arylation (2—1) reactions were known
to proceed in high yield.>* However, initial attempts at the electro-
philic fluorination step (3—2) were extremely poor. Thus, in order
for us to prepare a kilogram field sample of 1 utilizing our com-
modity starting material 4, we required a dependable, scaleable
electrophilic fluorination method to convert 3—2 (see Scheme 1).

Fluorination of electron-rich aromatic ring systems generally
can be accomplished by reaction with electrophilic fluorinating
agents.”> However, electron-rich pyridines tend to favor ring N-
fluorination. While such pyridine N-fluorination has been used to
advantage, for instance, to rearrange to 2-C—F pyridines® or to facil-
itate nucleophilic substitution at the 2- and/or 4-position on the
pyridine ring,” for that same reason, it proves detrimental for elec-
trophilic ring fluorination.® In fact, a survey of some of the widely
used electrophilic fluorinating agents for neutral aromatics, such as
Cs0S0,0F,° CF3SO5F,'° NOF,!! NOsF,'? CF;OF,'* and AcOF,'® re-
vealed that these materials are better N-fluorinating reagents than
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C-fluorinating agents when it comes to pyridines. Elemental fluo-
rine (F,) and xenon difluoride (XeF,), the most potent reagents in
this class, are known to react with little selectivity as both an N-
and a C-fluorinating agent depending on the reaction conditions
and the electronics of the pyridines.!” In addition, toxicity and spe-
cial handling requirements associated with F, make alternative flu-
orinating reagents preferable whenever possible. Use of the other
common route to C-fluorinated pyridines via fluorination of meta-
lated aromatic rings with reagents such as N-F pyridinium salts,'®
NFSi reagents,” N-F sultams,'” N-F sulfonamides'®, and N-F sulf-
onimides,'? is precluded by the acidic NH, protons present in sub-
strate 3. Thus, F-TEDA?® was identified as our reagent of choice for
effecting the transformation of 3—-2 as it had been reported as one
of the most powerful electrophilic fluorinating agents for neutral
electron-rich aromatic systems (just behind (CF5SO,),NF and F; it-
self),2! while still being safe and easy to handle.??

We initiated our studies of F-TEDA using acetonitrile as it ap-
peared in the literature to be a preferred solvent.?®> Under standard
reaction conditions we observed the following problems: (1) Pro-
duction of undesirable picloram (4). Competing chlorination during
F-TEDA reaction had indeed been previously reported though it is
unclear what the chlorinating species is or how it is generated.?42>
(2) Low mass recovery. The strong oxidizing power of F-TEDA, as
measured by its one-electron reduction potential,?® could easily
account for the destruction of UV-active (presumed) pyridyl prod-
ucts. (3) Poor conversion. While the heterogeneity of the reaction
could be suspected, competing N-fluorination of the pyridine ring
by F-TEDA along with unproductive complexation of F-TEDA with
F-TEDA’s desfluoro byproduct?’” more adequately explain our
incomplete fluorination and recovery of starting material.

In our case, competitive N-fluorination of both the product 2
and the starting material 3 would consume F-TEDA reagent as well
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Scheme 1. Schematic synthesis of field candidate 1.

as render 3 less electron rich and incapable of ring fluorination. The
putative N-fluorinated adducts, which would not survive workup
and/or chromatography, would then create the appearance of
incomplete reaction after reverting back to the parent pyridines
(or worse, as our mass balance was only ~50%).28

Despite these initial issues, F-TEDA was investigated further to
optimize the yield and minimize the aforementioned problems.
After surveying different solvents?® catalysts, co-reagents, and
reaction temperatures, we attempted an aqueous reaction to im-
prove the solubility (cf. reaction heterogeneity mentioned in note
3 above) of F-TEDA even though it is reported to be sensitive to
hydroxylic solvents.>® To our delight, the reaction proceeded
smoothly with much shorter reaction time and was eventually
optimized in deionized water at 65 °C, with respect to both yield
and product purity.

Unfortunately, even with excess F-TEDA and extended reaction
times, the fluorination reactions never exceeded 50% yield of 2 (as
monitored by HPLC), with most of the mass balance attributed to
‘unreacted’ 3. Attempts to drive the reaction further only led to
higher levels of picloram (4)*! at the expense of recoverable de-
sired 2 and/or starting material 3. Therefore, the reactions were
stopped when analysis by HPLC typically indicated a composition
of 40% 2, 55% 3, and <4% 4. Workup with 6 N HCI followed by cool-
ing precipitated the pyridine mixture.

Attempts to separate 2 from 3 and 4 via reversed-phase chro-
matography or recrystallization were not successful. Furthermore,
we also demonstrated that it was difficult to remove the 5-H and
5-Cl by-products via chromatography at subsequent stages. Thus,
a reliable large-scale method to purify 2 at this point was critical.
One approach was to convert the mixture of acids to their methyl
esters, then attempt separation using normal-phase chromatogra-
phy. During this process, we observed that 2 esterified much more
rapidly than either 3 or 4 in dry HCI in methanol. The enhanced
reactivity of 2 is possibly due to fluorine’s ability to be a pi-donor>?
when a full positive charge can be stabilized through hyperconju-
gation, and the rates of acid-catalyzed esterification of benzoic
acids have also been shown to increase as electron density in-
creases toward the carboxyl group.>

To take advantage of this fortuitous discovery, an iterative ki-
netic purification process was executed. Upon completion of the
esterification of crude 2 (CH3OH, HCl, 40 °C), the reaction mixture
was neutralized by addition of aqueous NaHCOs. This coinciden-
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tally precipitated the ester products (enriched in ester 5), enabling
separation from the unreacted picolinic acids (mostly 3 and 4, as
their sodium salts) via suction filtration. Subsequent saponification
of the ester product mixture back to the corresponding acids, for-
tified in 2, and then repeating the esterification/saponification se-
quence one more time afforded 2 in >90% purity, by HPLC. The
development of this procedure to purify 2 was critical for the prep-
aration of the kilogram field sample of 1 (see Scheme 2).

The overall route thus became fluorination of 3 with F-TEDA in
warm water, followed by iterative esterification/saponification of
the crude with dry HCI in methanol, to yield 2 in an overall yield
of 31% for the two steps: an especially efficient outcome for a
pyridine.

2. Experimental
2.1. General

All solvents and reagents were of reagent grade or higher. All
reactants were purchased from Aldrich unless otherwise noted.
HPLC data were collected on a Beckman System Gold version 1.6
(solvent delivery Module 126, diode array detector Module 168,
Varian’s Microsorb Cig column), eluting via gradient (0-100%
CH5CN). Purity was established via 'H NMR or HPLC. 300 MHz 'H
NMR and 75 MHz '3C NMR data were collected in CDCl; with
TMS as internal standard.

2.2. 4-Amino-3,6-dichloro-5-fluoropyridine-2-carboxylic acid
(2)

A1 1 three neck round-bottomed flask equipped with a mechan-
ical stirrer and a reflux condenser was charged with 3 (22.1¢g,
108.3 mmol) and H,0 (110 mL). While stirring at 25 °C, solid F-
TEDA (Air Products; 42.0 g, 118.6 mmol) was added in portions.
The resulting heterogeneous mixture was warmed to 65 °C and
progress was monitored periodically via HPLC. After 6 h, the reac-
tion was allowed to cool and made acidic with 6 N HCL. Stirring was
continued for 10 min and then the precipitate was collected with
suction filtration and rinsed several times with additional 6 N
HCL It was allowed to air dry overnight. Analysis of this crude
product via HPLC showed ~ 40% 2, 55% 3, and 4.5% 4. The filtrate
was extracted several times with 10% THF/CH,Cl, and a small
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Scheme 2. Iterative esterification/saponification purification sequence.
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amount of crude product (~1.2 g) was recovered. Scaling this reac-
tion up to 250 g provided 196 g of crude 2, used in the next step
without further purification.

2.3. Purification of 2 via esterification/saponification

Crude 2 (196 g; 55% 2, 40% 3, and 4% 4) was dissolved in meth-
anol (700 mL) saturated with anhydrous HCL. The solution was
heated to 40-45 °C for 3 h, then cooled to 25 °C, and poured into
an equivolume of saturated aqueous NaHCOs3 solution. The precip-
itate was collected by vacuum filtration, washed with water
(300 mL), and air dried giving 120 g of 5 in 85% purity by HPLC.
The solid product was dissolved in methanol (500 mL), the pH
brought to >12 with 2 N NaOH (320 mL, 1.2 equiv), and then stirred
at 25 °C for 2 h. The methanol was evaporated in vacuo, and the
residual aqueous solution acidified with 6 N HCl to pH <1. The
resulting precipitate was collected by vacuum filtration, washed
with water (300 mL), and air dried on the filter to give 110 g of 2
in 85% purity by HPLC. The sample of 2 was subjected to the ester-
ification/saponification sequence as described above to provide
98 g 2 in 91.5% purity. The overall yield from 3 was 31%. Analytical
sample: '"H NMR (DMSO-dg) 3: 13.83 (br s, 1H); 7.22 (s, 2H); '°F
NMR: —-137.36 ppm. Anal. Calcd. for CgH3N,0,ClL,F (224): C,
32.04; H, 1.34; N, 12.50. Found: C, 31.91; H, 1.32; N, 12.33.
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