Tetrahedron Letters 51 (2010) 79–81

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Stephen C. Fields ^b, William C. Lo ^a, William K. Brewster ^{a,}*, Christian T. Lowe ^a

^aDiscovery Research, Dow AgroSciences, Dow Venture Center, 9330 Zionsville Road, Indianapolis, IN 46268-1053, USA ^b Lexington Pharmaceuticals, West Lafayette, IN 47906, USA

Electrophilic fluorination: the aminopyridine dilemma

article info

ABSTRACT

the two steps.

Article history: Received 21 November 2008 Revised 12 October 2009 Accepted 19 October 2009 Available online 23 October 2009

Keywords: Electrophilic fluorination Aminopyridine F-TEDA

1. Introduction

The recent discovery of the commercially active ingredient aminopyralid (3) ,^{[1](#page-2-0)} a potent broad spectrum auxinic picolinate herbicide, prompted us to revisit the structure–activity relationships of this historical class of pyridine herbicides.^{[2](#page-2-0)} Through an activity optimization effort, we discovered that replacement of the 6-Cl on the pyridine ring of 2 with aryl groups produced 1 which showed unexpectedly high levels of herbicidal activity under a controlled environment (glasshouse testing). 3 To validate this discovery, we decided to test a representative of 1 in the field, which mandated the synthesis of kilogram quantities of the material. The electrolysis (4 \rightarrow 3) and the arylation (2 \rightarrow 1) reactions were known to proceed in high yield.^{[3,4](#page-2-0)} However, initial attempts at the electrophilic fluorination step $(3\rightarrow 2)$ were extremely poor. Thus, in order for us to prepare a kilogram field sample of 1 utilizing our commodity starting material 4, we required a dependable, scaleable electrophilic fluorination method to convert $3\rightarrow 2$ (see [Scheme 1\)](#page-1-0).

Fluorination of electron-rich aromatic ring systems generally can be accomplished by reaction with electrophilic fluorinating agents.⁵ However, electron-rich pyridines tend to favor ring Nfluorination. While such pyridine N-fluorination has been used to advantage, for instance, to rearrange to 2-C–F pyridines $⁶$ $⁶$ $⁶$ or to facil-</sup> itate nucleophilic substitution at the 2- and/or 4-position on the pyridine ring, $⁷$ for that same reason, it proves detrimental for elec-</sup> trophilic ring fluorination. 8 In fact, a survey of some of the widely used electrophilic fluorinating agents for neutral aromatics, such as $CSOSO_2OF, ^9$ $CF_3SO_3F, ^{10}$ $CF_3SO_3F, ^{10}$ $CF_3SO_3F, ^{10}$ NOF, 11 11 11 NO₃F, 12 12 12 CF₃OF, 13 and AcOF, 14 revealed that these materials are better N-fluorinating reagents than

C-fluorinating agents when it comes to pyridines. Elemental fluorine (F_2) and xenon difluoride (XeF₂), the most potent reagents in this class, are known to react with little selectivity as both an Nand a C-fluorinating agent depending on the reaction conditions and the electronics of the pyridines.^{[15](#page-2-0)} In addition, toxicity and special handling requirements associated with F_2 make alternative fluorinating reagents preferable whenever possible. Use of the other common route to C-fluorinated pyridines via fluorination of metalated aromatic rings with reagents such as N-F pyridinium salts, 16 16 16 NFSi reagents,⁵ N–F sultams,¹⁷ N–F sulfonamides¹⁸, and N–F sulf-onimides,^{[19](#page-2-0)} is precluded by the acidic NH₂ protons present in substrate 3 . Thus, F-TEDA^{[20](#page-2-0)} was identified as our reagent of choice for effecting the transformation of $3\rightarrow 2$ as it had been reported as one of the most powerful electrophilic fluorinating agents for neutral electron-rich aromatic systems (just behind $(CF_3SO_2)_2NF$ and F_2 itself), 21 while still being safe and easy to handle. 22 22 22

An unusually high yielding fluorination of aminopyralid (3) using F-TEDA (SELECTFLUOR[™]) in warm water, followed by kinetic resolution (via iterative esterification/saponification) of the crude fluorination product with dry HCl in methanol produced pure ring-fluorinated pyridine 2 in an overall yield of 31% for

> We initiated our studies of F-TEDA using acetonitrile as it ap-peared in the literature to be a preferred solvent.^{[23](#page-2-0)} Under standard reaction conditions we observed the following problems: (1) Production of undesirable picloram (4). Competing chlorination during F-TEDA reaction had indeed been previously reported though it is unclear what the chlorinating species is or how it is generated. $24,25$ (2) Low mass recovery. The strong oxidizing power of F-TEDA, as measured by its one-electron reduction potential, 26 26 26 could easily account for the destruction of UV-active (presumed) pyridyl products. (3) Poor conversion. While the heterogeneity of the reaction could be suspected, competing N-fluorination of the pyridine ring by F-TEDA along with unproductive complexation of F-TEDA with F-TEDA's desfluoro byproduct^{[27](#page-2-0)} more adequately explain our incomplete fluorination and recovery of starting material.

> In our case, competitive N-fluorination of both the product 2 and the starting material 3 would consume F-TEDA reagent as well

- 2009 Elsevier Ltd. All rights reserved.

Corresponding author. Tel.: +1 317 337 3419; fax: +1 317 337 3215. E-mail address: wkbrewster@dow.com (W.K. Brewster).

^{0040-4039/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi[:10.1016/j.tetlet.2009.10.089](http://dx.doi.org/10.1016/j.tetlet.2009.10.089)

Scheme 1. Schematic synthesis of field candidate 1.

as render 3 less electron rich and incapable of ring fluorination. The putative N-fluorinated adducts, which would not survive workup and/or chromatography, would then create the appearance of incomplete reaction after reverting back to the parent pyridines (or worse, as our mass balance was only ${\sim}50\%).^{28}$

Despite these initial issues, F-TEDA was investigated further to optimize the yield and minimize the aforementioned problems. After surveying different solvents, 29 catalysts, co-reagents, and reaction temperatures, we attempted an aqueous reaction to improve the solubility (cf. reaction heterogeneity mentioned in note 3 above) of F-TEDA even though it is reported to be sensitive to hydroxylic solvents.³⁰ To our delight, the reaction proceeded smoothly with much shorter reaction time and was eventually optimized in *deionized water* at 65 \degree C, with respect to both yield and product purity.

Unfortunately, even with excess F-TEDA and extended reaction times, the fluorination reactions never exceeded 50% yield of 2 (as monitored by HPLC), with most of the mass balance attributed to 'unreacted' 3. Attempts to drive the reaction further only led to higher levels of picloram $(4)^{31}$ $(4)^{31}$ $(4)^{31}$ at the expense of recoverable desired 2 and/or starting material 3. Therefore, the reactions were stopped when analysis by HPLC typically indicated a composition of 40% 2, 55% 3, and <4% 4. Workup with 6 N HCl followed by cooling precipitated the pyridine mixture.

Attempts to separate 2 from 3 and 4 via reversed-phase chromatography or recrystallization were not successful. Furthermore, we also demonstrated that it was difficult to remove the 5-H and 5-Cl by-products via chromatography at subsequent stages. Thus, a reliable large-scale method to purify 2 at this point was critical. One approach was to convert the mixture of acids to their methyl esters, then attempt separation using normal-phase chromatography. During this process, we observed that 2 esterified much more rapidly than either 3 or 4 in dry HCl in methanol. The enhanced reactivity of 2 is possibly due to fluorine's ability to be a pi-donor 32 when a full positive charge can be stabilized through hyperconjugation, and the rates of acid-catalyzed esterification of benzoic acids have also been shown to increase as electron density increases toward the carboxyl group. 33

To take advantage of this fortuitous discovery, an iterative kinetic purification process was executed. Upon completion of the esterification of crude 2 (CH₃OH, HCl, 40 °C), the reaction mixture was neutralized by addition of aqueous NaHCO₃. This coincidentally precipitated the ester products (enriched in ester 5), enabling separation from the unreacted picolinic acids (mostly 3 and 4, as their sodium salts) via suction filtration. Subsequent saponification of the ester product mixture back to the corresponding acids, fortified in 2, and then repeating the esterification/saponification sequence one more time afforded 2 in $>90\%$ purity, by HPLC. The development of this procedure to purify 2 was critical for the preparation of the kilogram field sample of 1 (see Scheme 2).

The overall route thus became fluorination of 3 with F-TEDA in warm water, followed by iterative esterification/saponification of the crude with dry HCl in methanol, to yield 2 in an overall yield of 31% for the two steps: an especially efficient outcome for a pyridine.

2. Experimental

2.1. General

All solvents and reagents were of reagent grade or higher. All reactants were purchased from Aldrich unless otherwise noted. HPLC data were collected on a Beckman System Gold version 1.6 (solvent delivery Module 126, diode array detector Module 168, Varian's Microsorb C_{18} column), eluting via gradient (0-100%) $CH₃CN$). Purity was established via ${}^{1}H$ NMR or HPLC. 300 MHz ${}^{1}H$ NMR and 75 MHz 13 C NMR data were collected in CDCl₃ with TMS as internal standard.

2.2. 4-Amino-3,6-dichloro-5-fIuoropyridine-2-carboxylic acid (2)

A 1 l three neck round-bottomed flask equipped with a mechanical stirrer and a reflux condenser was charged with 3 (22.1 g, 108.3 mmol) and H₂O (110 mL). While stirring at 25 °C, solid F-TEDA (Air Products; 42.0 g, 118.6 mmol) was added in portions. The resulting heterogeneous mixture was warmed to 65° C and progress was monitored periodically via HPLC. After 6 h, the reaction was allowed to cool and made acidic with 6 N HCl. Stirring was continued for 10 min and then the precipitate was collected with suction filtration and rinsed several times with additional 6 N HCl. It was allowed to air dry overnight. Analysis of this crude product via HPLC showed \sim 40% 2, 55% 3, and 4.5% 4. The filtrate was extracted several times with 10% THF/CH₂Cl₂ and a small

Scheme 2. Iterative esterification/saponification purification sequence.

amount of crude product (${\sim}$ 1.2 g) was recovered. Scaling this reaction up to 250 g provided 196 g of crude 2, used in the next step without further purification.

2.3. Purification of 2 via esterification/saponification

Crude 2 (196 g; 55% 2, 40% 3, and 4% 4) was dissolved in methanol (700 mL) saturated with anhydrous HCl. The solution was heated to 40-45 °C for 3 h, then cooled to 25 °C, and poured into an equivolume of saturated aqueous $NaHCO₃$ solution. The precipitate was collected by vacuum filtration, washed with water (300 mL), and air dried giving 120 g of 5 in 85% purity by HPLC. The solid product was dissolved in methanol (500 mL), the pH brought to >12 with 2 N NaOH (320 mL, 1.2 equiv), and then stirred at 25 °C for 2 h. The methanol was evaporated in vacuo, and the residual aqueous solution acidified with 6 N HCl to pH <1. The resulting precipitate was collected by vacuum filtration, washed with water (300 mL), and air dried on the filter to give 110 g of 2 in 85% purity by HPLC. The sample of 2 was subjected to the esterification/saponification sequence as described above to provide 98 g 2 in 91.5% purity. The overall yield from 3 was 31%. Analytical sample: ¹H NMR (DMSO-d₆) **3**: 13.83 (br s, 1H); 7.22 (s, 2H); ¹⁹F NMR: -137.36 ppm. Anal. Calcd. for $C_6H_3N_2O_2Cl_2F$ (224): C, 32.04; H, 1.34; N, 12.50. Found: C, 31.91; H, 1.32; N, 12.33.

Acknowledgments

The authors would like to thank Drs. Paul Graupner and Scott Thornburgh for their help with physical chemistry analyses. We would also like to thank Air Products for supplying F-TEDA and Dr. Andy Poss and Honeywell Scientists for their work on aminopyralid with F_2 .

References and notes

- 1. Common name 4-amino-3,6-dichloropicolinic acid, sold under the tradename Milestone^M (among others): Alexander, A. L.; Balko, T. W.; Bjelk, L. A.; Buysse, A. M.; Fields, S. C.; Keese, R.; Krumel, K. L.; Lo, W. C.; Lowe, C. T.; Richburg, J. S.; Ruiz, I. M. 4-Aminopicolinates and Their Use as Herbicides. U.S. Patent 6,297,197, Oct. 2, 2001; Chem. Abstr. 2001, 135, 107254.
- 2. Johnston, H.; Tomita, M. S. Amino-trichloropicolinic acid compounds. U.S. Patent 3,285,925, Nov. 15, 1966; Chem. Abstr. 1967, 66, 46338.
- 3. Balko, T. W.; Buysse, A. M.; Epp, J. B.; Fields, S. C.; Lowe, C. T.; Keese, R. J.; Richburg, J. S., III; Ruiz, J. M.; Weimer, M. R.; Green, R. A.; Gast, R. E.; Bryan, K.; Irvine, N. M.; Lo, W. C.-L.; Brewster, W. K.; Webster, J. D. 6-Aryl-4 aminopicolinates and Their Use as Herbicides. U. S. Patent 6,784,137, Aug. 31, 2004; Chem. Abstr. 2003, 138, 153444.
- 4. (a) Aminopyralid (3) is currently synthesized by the electrochemical reduction of picloram (4) at Dow on production scale.; (b) Krumel, K. L.; Bott, C. J.; Gullo,

M. F.; Hull, J. W., Jr.; Scortichini, C. L. Selective electrochemical reduction of halogenated 4-aminopicolinic acids. U. S. Patent 6,352,635, Mar. 5, 2002; Chem. Abstr. 2001, 135, 98860.

- 5. Differding, E.; Offner, H. Synlett **1991**, 187.
6. N-E pyridings rearrange to 2-C-E pyridings
- N–F pyridines rearrange to 2-C-F pyridines, however this does not appear to be general: Umemoto, T.; Tomizawa, G. J. Org. Chem. 1989, 54, 1726.
- 7. Direct nucleophilic substitution of N–F pyridines: Kiselyov, A.; Strekowski, L. J. Org. Chem. 1993, 58, 4476.
- 8. N-Fluorination of pyridine substrates is a problematic competing reaction because it renders the pyridine less reactive toward ring fluorination.
- 9. Gakh, A. A.; Romaniko, S. V.; Ugrak, B. I.; Fainzilberg, A. A. Tetrahedron 1991, 47, 7447.
- 10. Umemoto, T.; Tomita, K. Tetrahedron Lett. 1986, 27, 3271.
- 11. Boswell, G., Jr. J. Org. Chem. 1968, 33, 3699.
- 12. Gakh, A. A.; Nikishin, K. G.; Kagramanov, N. D.; Semenov, V. V. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 1991, 10, 2403.
- 13. Middleton, W. J.; Bingham, E. M. J. Am. Chem. Soc. 1980, 102, 4845.
14. Lerman, O.: Tor. Y.: Hebel, D.: Rozen, S. I. Org. Chem. 1984, 49, 806
- Lerman, O.; Tor, Y.; Hebel, D.; Rozen, S. J. Org. Chem. 1984, 49, 806.
- 15. (a) Merritt, R. F.; Stevens, T. E. J. Am. Chem. Soc. 1966, 88, 1822; (b) Anand, S. P.; Filler, R. J. Fluorine Chem. 1976, 7, 179.
- 16. Umemoto reagents are supplied by Allied Signal Inc., Buffalo Research Laboratories, Buffalo, NY: Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.; Kawada, K.; Tomita, K. J. Am. Chem. Soc. 1990, 112, 8563.
- Differding, E.; Lang, R. W. Tetrahedron Lett. 1993, 33, 3971.
- Appears to be effective on Grignards and electron rich phenols, but no specific mention of heterocycles: Barnette, W. E. J. Am. Chem. Soc. 1984, 106, 452.
- 19. Des Marteau reagents: (a) Singh, S.; Des Marteau, D.; Zuberi, S.; Witz, M.; Huang, H. N. J. Am. Chem. Soc. 1987, 109, 7194; (b) Resnati, G.; Des Marteau, D. J. Org. Chem. 1992, 57, 4281; (c) Des Marteau, D.; Xu, . Z-Q.; Witz, M. J. Org. Chem. 1992, 57, 629.
- 20. Also known as SELECTFLUOR, and Banks' Reagent: Banks, R. E. Preparation of Nfluorodiazoniabicycloalkanes as fluorinating agents. U. S. Patent 5,086,178, Feb. 4, 1992; Chem. Abstr. 1992, 116, 194355. Supplied by Air Products and Chemicals Inc., 7201 Hamilton Blvd, Allentown, PA 18195.
- 21. Lal, G. S. J. Org. Chem. 1993, 58, 2791.
- 22. F-TEDA is a white salt which is safe, stable, and easily handled in air.
- 23. Banks, R. E. J. Fluorine Chem. 1998, 87, 1. 24. Campbell, T. F.; Stephens, C. E. J. Fluorine Chem. 2006, 127, 1591.
-
- 25. F-TEDA also has been used deliberately to effect chlorination and other electrophilic substitutions: Syvret, R. G.; Butt, K. M.; Nguyen, T. P.; Bulleck, V. L.; Rieth, R. D. J. Org. Chem. 2002, 67, 4487.
- 26. Gillicinski, A. J. Fluorine Chem. 1992, 59, 157.
- 27. Laali, K. K.; Borodkin, G. I. J. Chem. Soc., Perkin Trans. 2 2002, 953.
- 28. Honeywell scientists, led by Dr. Andy Poss, attempted a fluorination of 3 with divalent fluorine in aqueous suspension at 25° C and observed similar results, with respect to mass balance and picloram formation (personal communication).
- 29. There has been a noted solvent dependence with these reagents: Zupan, M.; Iskra, J.; Stavber, S. J. Fluorine Chem. 1995, 70, 7.
- 30. Zupan, M.; Papez, M.; Stavber, S. J. Fluorine Chem. 1996, 78, 137.
- 31. We attribute the appearance of small amounts of 4 to electrophilic chlorination of 3 through a process involving N-fluorination of 3 followed by hydrolysis of the resulting N-fluoro pyridinium's 6-chloro position to generate chloride anion. Reaction of chloride with F-TEDA then likely generates an electrophilic chlorinating species²⁵ which attacks **3**. However, since F-TEDA itself has been suggested as a chloride source,²⁴ additional work is now underway to provide more details on the origin of **4**. Our results will be forthcoming.
- 32. Wiberg, K. B.; Rablen, P. R. J. Org. Chem. 1998, 63, 3722.
- 33. Hartman, R. J.; Borders, A. M. J. Am. Chem. Soc. 1937, 59, 2107.